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Over the past six months, this contract has funded two projects in full and one project in
part. The two fully funded projects focus on the application of random coefficient models to
wideband high-resolution direction finding and transient signal detection and estimation. The
partially funded project involves the analysis of nonlinear, possibly chaotic, dynamical systems.
Progress in each of these areas is described below.

Random Coefficient Models: The application of random coefficient models to narrowband
high :esolution direction finding has been very successful and has already resulted in a conference
paper to be presented at ICASSP92 (see the attached paper by Jost & Williams). It has been
shown that the random coefficient model is much better suited to modeling sensor array data
than the autoregressive model is. A simple method for estimating the parameters of the random
coefficient model has been developed and applied to simulated data. Finally, a beamformer for
the random coefficient model has been developed which has significantly better performance
then earlier linear predictive beamformers. A journal paper describing these results is currently
being written and should be submitted to the IEEE Transactions on Signal Processing by this
Spring. There is also progress being made toward the final goal of applying these techniques to
wideband direction finding.

Transient Signal Detection: The application of the wavelet transform to the detection
of transient signals with an array of sensors is being examined. This approach has led to a
directional multirate filter bank structure that decomposes the incoming signal into decaying
exponentials. This filter bank is also capable of adapting towards an improved estimate of the
structure of the transient signal which, consequently, also improves the detection performance.
Publication of these results will proceed after simulations and comparisons to other transient
signal detectors are complete.
Nonlinear System Identification: System identification algorithms that depend on gradient
descent methods have been found to degrade significantly if the time-series or, equivalently, the
system that produced the time-series is chaotic (see the attached paper by Drake & Williams).

.0. A careful analysis of these degradations has led to algorithms which are much less sensitive to
0.4. the potentially chaotic nature of these nonlinear systems. Analysis of these systems and their

2 time-series continues with the eventual goal being a very general system identification algorithm
' -~ to be applied to the time-series produced by nonlinear discrete-time systems.
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A BEAMFORMER BASED UPON THE RANDOM
COEFFICIENT MODEL *

Bruce Jost Douglas B. Williams
Georgia Institute of Technology, Atlanta, GA, 30332-0250 USA

ABSTRACT superior resolution properties (I]. However, the perfor-

This paper applies the random coefficient model to array mance of the LP beamformer is highly dependent on both

processing, specifically in the design of a bearmformer for di- the signals' directions of propagation and the selection of

rection finding. This model is similar to the autoregressive mo. Also, in many cases the direction-of-arrival estimation
recton indig. his ode isbias is quite high. The primary causes of this estimation

(AR) model, except the coefficients are allowed to change bias are additive noise in the observations and correlations

with time instead of remaining constant; thus allowing the between propagating signals. Additive noise and signal cor-

beamformer to better model any additive noise or signal cor- relations do not obey an AR relationship across the array;

relations in the observations. Through the use of a binary

hypothesis test, it is shown that random coefficient models so the model in (1) is no longer accurate.

better fit typical array data than do AR models. A Kalman In order to keep the simplicity of the linear model of (1)

filter is presented that has the array observations as inputs and yet more accurately match the array data, the random

and the parameters of the random coefficient model as out- coefficient model is proposed. This model is identical to

puts. A new beamformer based on the random coefficient the AR model except the weights am are random instead of

model is derived that is similar to the constant coefficient constant and (1) becomes

linear predictive (CCLP) beamformer. The two beamform-
ers are compared and it is shown that the random coefficient X.o(k) = - am(k)X.(k). (2)
beamformer outperforms the CCLP beamformer. winmo

The coefficients can be expressed as

1. INTRODUCTION an(k) = 0,, + PVm(k), (3)

The linear model is probably the most popular model in use where #,,, is the mean of the coefficients for the mth sensor
in engineering and science because it is simple and yet pow- and the vm.(k) are zero-mean independent identically dis-
erful. Many times, computational advantages due to the tributed random variables. The random coefficient model
simplicity of the linear model far outweigh any performance of (2) keeps the simple linear form of the AR model and,
gain achieved by more complicated models. The commonly hence, its computational advantages. Since the constant
used autoregressive (AR) model is one such linear model. coefficients of an AR model can be expressed in terms of
In array processing the AR model leads to linear predictive (3) with the YVm(k) equal to zero, the random coefficient
(LP) beamforming (I] where the output of a selected sensor, model can actually be thought of as a generalization of the
say the moth, is estimated as a weighted linear combination AR model. Therefore, the random coefficient model will fit
of the other sensor outputs. Assuming narrowband signals the array data at least as well as the AR model and will
and letting X,.(k), k = 0,..., N - 1, be snapshots of the simplify to the AR model when it is the better choice.
Fourier transform of the mth sensor's output at the signals'
common center frequency, the LP model for Xm(k) is 2. TESTING OF THE MODELS

Through the use of a binary hypothesis test developed by
XM.o(k) n - .a, (k), (1) Breusch and Pagan [2], it is possible to test which model,

M,€, 0  AR or random coefficient, will better fit typical array data. Li
The test indicates that if the residuals from an AR model L_

where {Gm) is a set of complex-valued weights to be found. have a constant variance, an AR model is better suited;
When compared to other beamformers with roughly otherwise, a random coefficient model should be considered. " .

equivalent computational complexity, such as the minimum The test is performed by generating a Lagrange multiplier
variance distortionless receiver, the LP method possesses (LM) statistic from generated array data. If the null hy -........--

pothesis of an AR model is true, then the LM statistics
*THIS WORK WAS SUPPORTED BY THE OFFICE OF will be asymptotically distributed as chi-squared with M --

NAVAL RESEARCH UNDER CONTRACT NUMBER N00014- degrees of freedom, where M is the number of sensors in ics
91-J-4129 the array. The method used for this paper was to generate



0.121 o.,- ,(klk - 1) = E.

°" h(k) = z'(k)2(k/k - 1)z(k) + o,,
0.0,, i(k/k) = b + t(k/k - 1)z(k)h-(k)
0.04 J[X.. + z'(k)a(k/k - 1)]
0.02o IPo-, !!(klk) = 2(klk - 1) -

7(klk - 1)z(k)h-'(k)z'(k)2(k/k - 1) (4)

Figure 1: Results of the hypothesis test. The ten degree of where i(k/k) is the estimate of a(k) at time k given all the
freedom chi-squared distribution is the solid line while the nor- observations up to k, f(k/k) is the error covanance matrix
malized histogram of the LM statistics is the broken line. The estimate of a(k) at time k given all the observations up to
array data was from a uniform linear array of 10 sensors with
spacing A. There are two signals present at -100 and 300, the k. and o'n is the noise variance estimate.noise is additive white Gaussian and the SN 6 d. Thre r To implement the Kalman filter, initial estimates of b, E,
100 independent samples being used (N = 100). and o2 must be calculated. The authors will present a

method that calculates the least-squares estimates of these
array data for a given number of signals at their respective terms following [4]. Introducing a noise term into (2) yields
angles of arrival, and a given number of sensors, time sam-
ples, and signal-to-noise ratio. The LM statistic given in [2] Xm.(k) = - E a,(k)X,(k) + nmo(k) (5)
was calculated for a large number of sets of data and the VnVno

normalized histogram of these LM statistics was calculated
and plotted against a chi-squared density function with M where nob is white Gaussian noise and is uncorrelated
degrees of freedom to see how closely the two matched. Fig- with the observations X(k). The noise associated with
ure I shows an example of this test in which the normalized an arbitrary sensor, say the r (th, has the property
histogram of the LM statistics clearly does not match the E{nm(j)n (k)} = 6(y - k)or. Using (3), equation (5) ca

chi-squared density plot. In fact, it was found that the
AR hypothesis is rejected for even the simplest cases if any Xm.(k) = - fX (k) - E ,n(k)X (k)
additive noise or signal correlation is present. Therefore, MVIno MV- M
it would seem that the random coefficient model is better + (k)
suited for array processing applications. '"-o(k)

3. RANDOM COEFFICIENT BEAMFORMER = - 6 nXm(k) + u(k) (6)

As the random coefficient model has been shown to fit the iero
data more accurately than the AR model, a beamforming
algorithm based on this model has been developed. The where
remainder of the paper will present the algorithm for esti- =
mating the random coefficients and then the derivation of mo m

the random coefficient beamformer. Defining

3.1. Estimating the Coefficients u' = [u(0)...u(N - 1)]
The first step is to estimate the random coefficients. This Y' = [X,.(0) ... X,,(N- 1)]
is performed with the Kalman filter outlined in [3] and [4]. Z' = [z(0) ... z(N - 1)],
The following set of vectors is introduced to ease the com-
putations: equation (6) can be written as

a'(k) = [ao(k)...-ao-,(k) a mo,+(k)... am i(k)] y =-Zb+u.

b' = [fo . .. m-i 0mo+l ... Pm-1] Using ordinary least squares, the estimate of b is

v'(k) = ["( M...,,,,.0_,( M,,,,,+ ( M...,,u_,(0)
Z'(k) = [Xo(k) ... Xo-I(k) X.,o+I(k) ... Xu-,(k)] b = -(Z'Z)-'Z'y. (8)

Taking the expected value of the magnitude squared ofwhere M is the number of sensors and (') denotes Hermitian (7) yields

tranwpose. An error covariance matrix is defined as

= [u,], i,j =s 0,... ,no - l,mo + 1..., M - I {Iu(k)l2) = E{I n.m(k) - E t'(k)X.(k) 12)

where E{v.(k)P; (1)) = 6(k - l)u?,. From [3] and [4] the es- which reduces to
timates of a(k) are calculated from the Kalman filter equa-
tions E(,(tk)I') = ez, + , E E{s,(k)s,,(k)X,(k)X,(k)}

1(k/k - 1) = b (9)



where the other terms are zero because the noise is uncorre- The right-hand expected value can be expanded as in (9)
lated with the signals and coefficients. Assuming the X6 (k)
and a,(k) are zero mean and Gaussian, (9) can be expressed 6(1)0 2 = E{.,EXX; } +A(l)+ BU) (14)
as

E{u(k)l2) =

Z _, [E(,i(k)v(k))EJX,(k)X;(k)) + where

(kox; (k)) +A(i) = -ZE {a.x,)E{a;x;,)
E,,(k)X,(k))E{,,*(k)X;*(k)) +,
Eiv,(k)X;(k))E{v,;(k)X'(k))] B(1) = Ea., )Elox,}

which reduces to * i

E{I u(k) 12) = o.+ _# E{v,(k)v;(k))E{Xi(k)X,(k)). for -- -(M-1), ,M-1. The expected values in (14) can
691 0 jM(o0) be estimated by averaging over the available data and co-

(10) efficient estimates, e.g., E{faXi) = EN-i a;(k)X,(k)
Iie +)=The spatial Fourier transform of (14) can be calculated
I u(k + )12----- E{I u(k + )12) (11) for any array geometry, but if a linear uniform array is

where the Ct is a zero mean error with unknown vaxia.nce, used, the transform can be paraimeterized in terms of just
(10) can be used in (11) as the direction of look 0. Therefore, the random coefficient

+ 1)12 = 2a+ beamformer for a uniform linear array steered in direction
Ju(kl n, can be written as

1 E{f,(k + 1)a#(k + 1))E{X,(k + )X;(k + 1) + ti (4.0,2o0-0 PRC(8) (Ur -4~ A(9) -B(O) _ (5
or in vector notation as E Ef{aa;}e-2'*(I - -him 6

e Xs + r ,=i j=i

where e' = [Iu(02I2 ... IU(N - lIp2], r' = [fo ... fN-i], s' = where d is the spacing between sensors, A is the wavelength2 02 2 2 O

[ 1,i 1,,2 .. 4.M_, 2.1 "''ff 1 - 1,p-,], and of the propagating signals, and .4 and B are the spatial

1 X1 (O)Xi(0) X1(O)X*(O) ... X2(0)X;,_1(0) X 2(0)Xj'(O) ... X, 1(0)X;_1(0) 1
i X 1(N-1)Xt(N-1) ... X .X(N - 1)X; _ 1(N - 1)

Using ordinary least squares, the estimate of s is

i = (X'X)-'X'e, (12) Fourier transforms of A() and B(l), respectively, e.g.,

from which the estimates of a 2 and E are extracted. M-3

3.2. The Beamformer 4(8) = Y A()e-2w ,,in.
1= -(14-i)

Once the random coefficients have been estimated, they can
be used in a beamformer to calculate the direction(s) of the 3.3. Simulation Results
measured signal(s). Following the derivation of the constant
coefficient LP beamformer, (5) can be rewritten as The random coefficient be&mformer of (15) can be com-

pared to a constant coefficient LP (CCLP) beamformer.
(k) X (k) + E am(k)X..(k) A typical example of this comparison is shown in figure 2

,-O€, where the predictive element mo is the first sensor for both
M_, beamformers. It is seen that while both have sharp peaks

= a,,,(k)X,.(k) (13) at -10" and 30', the random coefficient beamformer has a
lower noise floor with none of the spurious peaks that might

m-o be confused as signals. This improvement is due to the ran-

if amo(k) = I for k = 0,..., N - 1. Multiplying (13) with dom coefficient model being able to fit the noisy array data
a similar expression for n:,o+i(k) and taking the expected better than the AR model. As was expected from the re-
value gives (dropping the time index for brevity) sults of the hypothesis test, in the comparisons run by the

authors the random coefficient beamformer clearly outper-
E{n,.no+1) = 6(1)o* = E eaoXiX,+). forms the CCLP almost every time and always performs at

I least as well as the CCLP.
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Figure 2: Comparison of the CCL and random coefficient beamformers. The array data used was the same am that described infigure 1.

4. CONCLUSION 6 C. Hldreth and J. P. Houck, dSome estimators for a lin-

mating theerandom coefficientsiusingsa Ka.man filter.tThe

The random coefficient model was introduced for use in
rray processing. It was shown through the use of a hy- Ass., vol. 63, pp. 584-595, June 1968.

pothesis test that the random coefficient model will better
fit typical array data than the constant coefficient autore-
gressive model. A beamformer using the random coefficient
model was developed (15) as well as the method for esti-
mating the random coefficients using a Kalman filter. The
random coefficient beamnformer was then compared to the

familiar constant coefficient linear predictive beamformer
and was shown to be a dramatic improvement.
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ON ERROR FUNCTION SELECTION
FOR TRE ANALYSIS OF NONLINEAR TIME SERIES

Daniel F. Drake and Douglas B. Williams

School of Electrical Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT tern. In particular, in the neighborhood of the global mini-

The extreme sensitivity of a chaotic system's steady state mum at least one eigenvalue of the Hessian of the waveform

response to small changes in its initial conditions makes long error increases exponentially as a function of the length

term prediction of the evolution of such a system difficult, if of the target sequence. This unbounded growth sets the

not impossible. In the framework of parameter estimation, global minimum at the bottom of a deep trench, rendering

we show how this sensitivity can hinder attempts to deter- gradient descent techniques impractical. Consequently, we

mine model parameters that will reproduce a target chaotic have modified the waveform error minimization procedure

time sequence. Specifically, a waveform error minimization by taking into account the behavior of the error surface as a

technique based on gradient descent optimization is not well function of target sequence length. This improved optimiza-

suited for estimating the parameters of a strongly chaotic tion technique provides a much wider basin of attraction for

system. We propose a modification of this minirization the global minimum than the original method.

procedure that avoids some of the obstacles present when
estimating the parameters of a chaotic system. 2. DYNAMICAL SYSTEMS AND CHAOS

1. INTRODUCTION Suppose h : M x Rk -. M is a parameterized discrete-time
dynamical system defined on a smooth compact manifold

Chaos-unpredictable deterministic behavior-has been ob- M such that
served in phenomena ranging from chemical reactions [I] to y[n] = h(y[n - 1], p). (I)

solar flares [2]. Modelling time sequences derived from such We assume that this system is stable, and further that the
processes can provide insight into the underlying physics state y[n] converges onto an attractor A C M as n tends
that drive them. Unfortunately, the intrinsic sensitivity of to infinity for any initial condition y[-1] contained in the
chaotic systems makes them difficult to model; a represen- basin of attraction of A.
tation with enough freedom to correctly reproduce chaotic It can be shown that the variation of the state y(n] with
behavior will itself be extremely susceptible to small varia- respect to initial conditions y[-l] is given by
tions in its parameters.

The realization that long-term prediction of certain com-
pletely deterministic systems was impossible sparked inter- D5 [_lly[n] = J D3h(y[i),p) "  (2)
est in a new area of Dynamical Systems, an area dealing i=-I
with the phenomenon of chaos. The classic description of a
chaotic system usually includes the phrase "sensitive depen- where the operator D. applied to the vector-valued func-

dence on initial conditions" [3]. Sensitive, in this context, tion f(x) results in a matrix with elements (Dsf),, =

refers to the exponential rate at which initially close tra- 8f.(x)/8z,. The Lyapunov exponents quantify the average
jectories on the attractor diverge. This sensitivity can be rate at which small perturbations of the initial condition
quantified by the spectrum of Lyapunov exponents associ- are exponentially amplified or attenuated upon iterations
ated with the attractor. of the system [5]. An infinitesimal deviation dy[-l] will

Quatieri and Hofstetter [4] wished to determine the pa- result in a deviation
rameters and initial conditions of a nonlinear difference n-1
equation whose solution would be as close as possible to dy[n] I Doh(y[i - 1],p)dy[-l], (3)
some target time sequence generated by a dynamical sys-
tem. They derived a gradient descent method that mini-
mized the waveform error between the solution of the dif- and for almost all dy[-1]
ference equation model and the target sequence.

We will show that the waveform error surface is not well- [Idy[n]I e,(n)Idy[-l]JJ, (4)
behaved if the target sequence is generated by a chaotic sys-

where A is the largest Lyapunov exponent of h on A. Eq (4)
This work was supported in part by the Office of Naval - 4e- 9on-hsearch under contract N00014-91-J-4129. is equivalent to saying that i.=_3 Dph(y[i - 1), p) has an



eigenvalue that grows on average and in absolute value as vectors (x[n]), where x[n] = (z[n],z[n-1],. .. ,z[n-m+l]),
e'(' + ' ) . A system is, by definition, chaotic if it has least with the embedding dimension m suitably chosen . The
one positive Lyapunov exponent, indicating its exponential diffeomorphic relationship between the true trajectory in
sensitivity to small variations in initial conditions. phase space and the reconstructed one preserves certain

Similarly one can show that the dependence of the state quantities, namely the Lyapunov exponents. Therefore the
on small variations of the system's parameters is given by dynamical system

.- I f fl f(x[n - 1, p)1
Dy[n] = i Dyh(y[J],P) Dph(y[slp). (5) z[n -1]

*--i / x[n] g(x[n - 1],p)= z[n-2] (10)

The term Dph converts small deviations in the parameters
into small deviations in the state which ae then propagated z[n - m + 1]
forward by the product f1 Dyh. This coupling between pa-
rameters and state implies that a chaotic system will be has the same Lyapunov exponents as the original dynami-
extremely sensitive not only to variations in its initial con- cal system. The gradient of the scalar time sequence (z[n])
ditions but to variations in its parameters as well. is simply the first row of the matrix Dpx[n). If the dy-

namical system that produced the sequence is chaotic, then

3. WAVEFORM ERROR MINIMIZATION IIDpz[n]JJ will grow exponentially fast with increasing n,
since it generally won't be orthogonal to the eigenvector

Suppose we have a scalar time sequence x[n] = v(y[n]) de- along which the exponential expansion is taking place. Thus
rived from a dynamical system via v: M - R. We assume the Hessian of the waveform error in Eq (9), composed of
this sequence is the solution of an m 'h order nonlinear dif- a sum of outer products of the vectors (Dpz[n]), has an
ference equation with a known form, but depending on k increasingly large eigenvalue. As N increases the global
unknown parameters p. An estimate p of these parameters minimum will become sandwiched between two increasingly
produces the time sequence estimate steep walls- not ideal conditions for gradient descent op-

timization.
t[n] = f(*[n - 1], 0) with 0 < n < N, (6) As will be seen in the next section, the waveform error

seems well-behaved for short chaotic sequences; the expo-
where *[n - 1] = (i[n - 1], :i[n - 2],.... i[n - m])T is the nential amplification of parameter mismatch has little time
vector of the last m values of z at time n. For simplicity we over which to markedly modify the sequence estimate. Our
assume that the initial conditions x[-1] are known exactly'; modification of the waveform error minimization procedure
let *[-1] = x[-1]. We wish to find the parameters that takes advantage of this phenomenon. Instead of trying
minimize the waveform error to optimize our parameter estimates for the whole target

N-2 sequence at once, we sequentially minimize the waveform

EN = 1 (i[n] - z [n])2_ (7) errors Eo,E,,...,EN. Once E,, sinks below some fixed

n0 threshold, we repeat the minimization process on E,+i, us-
ing the last estimates of the parameters as the initial guess

Quatieri and Hofstetter use a gradient descent method for the next step. Since each error surface has the global
to minimize the .,veform error with respect to parameters. minimum in common, successive minimization of the errors
An initial estimate i5 of the parameter values is iteratively forces the parameter estimates closer to their true value.
updated We've effectively expanded the global minimum's basin of

1p - fp - p (DpEN)T (8) attraction to that of a length-one sequence, independent of

so that the error decreases at each step. The step size 1 the true sequence length.
is chosen so that the error decreases at each iteration; the
minimization procedure terminates when the waveform er- 4. EXAMPLES
ror falls below a specified threshold.

In order to better understand the behavior of the error A simple system capable of exhibiting chaotic behavior is
surface, we expand EN about the global minimum p: the logistic equation

1 "/N-2 ( zn)T  p, 9)z[n] = plz[n - z]1 tn - ),()
E,-, . Id Z (Dpz[n])T Dzn) p 9

dp P,( ) which is both a scalar dynamical system and a first order

nonlinear difference equation. The model exhibits markedly
where dp represents an infinitesimal deviation from the true different types of steady state behavior depending on the
parameters. A remarkable result by Takens [6] states that choice of pl. A parameter value of p1 = 3.5 results in a
under the proper conditions, a scalar time sequence can be period-four oscillation; in contrast, a value pi = 3.7 pro-
'time delay embedded' into R', revealing a diffeomorphic duces chaotic behavior. Figure I contrasts the waveform
copy of the phase space dynamics that generated the se- error for both cases, for sequences of length N = 87 and
quence. The embedding is represented by the sequence of an initial condition z[-1] = 0.42. While relatively fiat

1The oncn and smooth in the periodic case, the waveform error in the

origin of the sequence always be shifted the right chaotic case is riddled with local minima and the global
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Figure 1: The waveform errors of periodic (above) and Figure 2: The waveform error as a function of target se-
chaotic (below) target sequences of length 87, generated by quence length. In this case the sequence was generated by
the logistic equation. tehaotic logistic equation. The error atirface is relatively

______________________________________ smooth and siallow for short sequences, and becomes in-
creasingly rough as more of the sequence is considered.

minimum has the very narrow basin of attraction as dis-
cussed above. Figure 4 shows that our extension method outperforms

Figure 2 illustrates the behavior of the waveform er- the original waveform error minimization technique. Initial
ror for the chaotic logistic system with respect to the se parameter estimates with errors of more that i0 - 2 are re-
quence length. As noted previously, error surfaces for short duced by six orders of magnitude. The original method,
sequence lengths are relatively smooth, giving parameter initiated with deviations of only 5 x I0- s in both parame
estimates with relatively large errors a greater chance of ters, is immediately trapped in a local minimum.
converging to the true parameter. Unlike the one dimensional case, for this two-parameter

Figure 3 compares the performance of the original wave- system our method does not pro2duce estimates that con-
form error minimization technique, which tries to mnize verge to the true parameter values. Figure 5 shows the
the waveform error EN directly, and our modified version. error surface Es0 in a small neighborhood of the global
As expected from the general appearance of the waveform minimum. As expected, the sharp gradient discussed in
error, an initial deviation of only 5 x 10 - in the model previous sections is in evidence. However, there also seems

paraete ges tappd amos immdiaelyin loal un- to be a continuous range of parameter values that generate
imurn, and the error never descends below the specified the same waveform as those located at the global minimum.
threshold of 10 - s. Our extension method, on the other This alignment is representative of the true behavior of the
hand, correctly identifies the true parameter after extend- H~non system and is not an artifact of the conversion from
ing the target sequence to/ N - 87, even though the initial dynamical system to difference equation. An examination
deviation from the true parameter value was 5 x i0-2; six of the gradient of (yi[n]) with respect to the parameters
orders of magnitudes larger. In fact, any initial parame- shows that while the (D,3 1 ii]) grow quickly for increasing
ter value within the logistic equation's usual working range ni as expected, they also tend to align themselves along a
po E [0, 4] will be converge to the the true parameter value, common axis. The sum of outer products in Eq. 9 is domil-

An example of a two-parameter chaotic system is the nated by the ma~trices formed from these increasingly large
H~non system gradients that all point in the same direction, and conse

in] = 1 - pip [n - 1] +i 12[fl - 1] (12) quently the Hessian appears singular. This behavior is not
12[f] =puyifl 1] 13) typical of chaotic dynamical systems in general.

with parameter values P1 = 1.4, P2 --- 0.3. If we consider 6. CONCLUSION
the time sequence produced by the first variable (p1 [n]) our UsncoepsfmthdiilnefDyaclSses
difference equation model has the formUsncoepsro thdsipieoDyailSsem

we have shown how the sensitive dependence of a chaotic
z~n] = I - poz2 [n - 1] + piz[n - 2], (14) system on its initial conditions can induce an analogous de-

pendence on its parameters. Takens' embedding theorem
with initial conditions z[-l] -- ii[-l] -- 0.948586 and allowed us to transplant the phase space based notion of
z{-2J = p [-l]/p3 = 0.425317. Lyapunov exponents which quantify this sensitive depen-
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initial p~ramete esiates get trapped in local minima
when trying to minni e the waveform error for the entire Fipire 4: Paramneter estimation performance for the
target sequence. In contrast a much poorer initial p am- Henon system. Just as in the one-parameter case, the orig-
eter estimate converges to th~e true parameter value fror a inal rardiation procedure procedure falls immediately
target sequence length of 87 when our modified miiia- into a locl minimum. However, while the modified wave-
tion method is employed. form error method reduces initially much larger para'meter

deviations better than the original, it does not converge
to the true paramneters, due to the singutlar nature of tfe
waveform error's Hessian.

dence into a nonlinear difference equation framework. We
explained how such sensitivity could produce conditions ill-
suited for a proposed gradient descent minimization of the
waveform error, and proposed an improved method to over-
come its limitations. The improved method performed sig-
nificantly better than the original when tested on sequences
generated from two chaotic dynamical systems.
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